Filtered by author: Anne DiPaola Clear Filter

A Quantum Leap in Next-Gen Optical Atomic Clocks

QuantX Labs, an Australian deep technology company, has achieved a groundbreaking advancement with its cryogenic sapphire oscillator, the Cryoclock. Operating at microwave frequencies, it offers unparalleled signal purity and stability, attracting interest from defense and commercial markets while also spearheading the development of advanced quantum technology for space applications.QuantX Labs, an Australian deep technology company, has achieved a groundbreaking advancement with its cryogenic sapphire oscillator, the Cryoclock. Operating at microwave frequencies, it offers unparalleled signal purity and stability, attracting interest from defense and commercial markets while also spearheading the development of advanced quantum technology for space applications. 

Read More

Strain Manipulates TaSe3 for Quantum Effects

Figure 1 (left): Scaled magnetoresistance (MR) data obtained from a ribbon sample shows a conventional H2 dependence. Figure 2 (right): MR from ring-shaped samples deviates from conventional behavior and is~1/1,000 of that in the ribbons. Credit: J. Xing, J. Blawat, S. Speer, A. I. Us Saleheen, J. Singleton, R. Jin, “Manipulation of the Magnetoresistance by Strain in Topological TaSe3”, Adv. Quant. Tech. 5, 2200094 (2022)Topological effects are predicted to have many potential uses in future electronic devices. Therefore, finding ways to control these effects is desirable. As predicted by first-principles calculations, the one-dimensional (1D) transition-metal trichalcogenide TaSe3 is a strongly topological semimetal. It has a unique atomic arrangement of two inequivalent chains; the shorter distance between the Se atoms in the type-I chains (red in figures) creates strong covalent p-p bonding between the two Se atoms, whereas this bond is broken in the type-II chains (blue in figures) so that bonds form with the Ta atoms from the neighboring type-I chains. The chains are along the b-axis crystallographic direction. Calculations suggest that nontrivial topological phases can be induced by the distorted type-II chain under ambient conditions and/or strain. In collaboration with John Singleton at the Pulsed-Field Facility, National High Magnetic Field Laboratory, research led by Dr. Rongying Jin of the University of South Carolina (USC) investigated the effect of strain on TaSe3 by measuring its magnetoresistance (MR) in fields of up to 60 T. Both ribbon-shaped (under ambient conditions) and ring-shaped (i.e., deliberately strained) samples were studied. 

Read More

Cryogenics at FAIR Unleashes the Power of Discovery

From here to FAIR: The existing GSI accelerators (blue) and the FAIR facilities (red). FAIR comprises the SIS100 synchrotron; the antiproton separator and the Super Fragment Separator; the collector ring; high energy storage ring; and experimental stations for the APPA, CBM, NUSTAR and PANDA research programs. The proton linac and the CRYRING (a low-energy storage ring for heavy ions) also belong to the FAIR instrumentation portfolio. Credit: CERNThe Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, is embarking on a pioneering mission that will transform accelerator research and expand our understanding of the universe. With its ambitious vision to explore an extensive research canvas, FAIR is set to become a global hub for scientific exploration, spanning diverse domains such as hadron physics, nuclear structure, astrophysics, atomic physics, materials science, radiation biophysics, cancer therapy and space science. 

Read More

IRLabs Pioneers Solutions for High Altitude Scientific Exploration

A High-Flying Mission: The OSAS-B Oxygen Spectrometer, aboard the HEMERA balloon gondola, can ascend to 33 km, capturing crucial data on atomic oxygen in Earth's upper atmosphere. IRLabs' innovative solutions ensured a successful high-altitude scientific expedition. Credit: David LanevilleIn the pursuit of scientific knowledge, the German Aerospace Center (DLR) embarked on a mission to explore the enigmatic properties of atomic oxygen in Earth’s upper atmosphere. Understanding the impact of this element on satellite corrosion, deceleration in low-Earth orbits and its role as an indicator of climate change held great importance for DLR’s research. Its ambitious endeavor involved deploying the OSAS-B oxygen spectrometer as part of Europe’s HEMERA balloon campaign. For this intricate task, DLR sought the expertise of Infrared Labs (IRLabs), a respected industry leader boasting decades of experience in high altitude cryostats. 

Read More

NIF Journeys to Ignition

The fusion research system containing a cryostat at the National Ignition Facility. Credit: Suhas BhandarkarDecember 5, 2022, marked a historic breakthrough in the field of fusion research as scientists achieved ignition, a momentous achievement that has been a scientific grand challenge spanning over 50 years. The National Ignition Facility (NIF) within the Lawrence Livermore National Laboratory (LLNL) achieved an igniting fusion reaction where the nuclear energy output surpassed the input of optical energy—a remarkable feat known as ignition. 

Read More

Partnership Revolutionizes Healthcare with the MAGNETOM Terra 7 Tesla MRI Scanner

Three MRI scans of the same brain demonstrate the difference between 1.5 Tesla (left), 3 Tesla (center) and 7 Tesla (right) MRI. Credit: Carle HealthThe University of Illinois Urbana-Champaign (UIUC) and Carle Health, a vertically integrated healthcare system with hospitals, physician practices and a medical school, have formed a unique partnership to co-own and operate a Siemens Healthineers MAGNETOM Terra 7 Tesla MRI scanner. This collaboration has significant implications for both research and clinical care. The scanner, with its high-powered magnetic field and advanced neuroimaging capabilities, offers transformative potential. 

Read More

Adult Corals Have Been Safely Frozen and Revived for the First Time

Image: Porites compressa, a finger coral, gets its name for its blunt branches. Mature chunks of it collected off the coast of Hawaii have successfully been frozen and revived, offering hope that the world’s corals could be preserved as the oceans warm and acidify. Credit: Claire Lager, SmithsonianLike something out of science fiction, small colonies of mature corals have been safely frozen and revived for the first time, though more work will be needed to ensure their long-term survival, researchers report reported in Nature Communications. Freezing chunks of living corals for safekeeping — or cryopreserving them — could save them from extinction as the oceans heat up and acidify from human-caused climate change.

Read More

Cryogenic Prober Determines Quality of Qubit Devices

Image: Fraunhofer IAF announces Germany’s first cryogenic on-wafer statistical measurement system for qubit devices. Credit: Fraunhofer IAFGermany's first cryogenic measuring setup for the statistical quality measurement of qubit devices on 200- and 300-mm wafers has commenced operation at Fraunhofer IAF. With the newly established cryogenic on-wafer prober, researchers at the Fraunhofer Institute for Applied Solid State Physics IAF aim to gain a deeper understanding of the functioning of quantum devices based on semiconductor quantum dots, quantum wells, and superconductors.

Read More

GKN, Marshall and Parker to Cooperate on Hydrogen Flight

GKN & Marschall and Parker to cooperate on hydrogen flightAerospace industry supplier GKN Aerospace is joining forces with Marshall and Parker Aerospace to explore liquid hydrogen fuel systems for aircraft. The partners plan to develop a liquid hydrogen system suitable for both fuel cell and internal combustion engine aircraft.

Read More

Unveiling the Intricate Protein Complex Guiding Signaling to Cilia

Image courtesy of Bio Tech.

Read More

Electrifying Space: Zenno’s fuel-free satellite pointing system

Zenno's Max Arshavsky (L) & Erica Lloyd (R) with Z01New Zealand-based space-flight systems company, Zenno Astronautics (Zenno), has proudly announced a remarkable achievement—surpassing a staggering $75 million in product sales (equivalent to USD 48 million) for its groundbreaking innovation, the Z01™ superconducting magnetorquer for spacecraft attitude control.

Read More

World-First in Oman

Image: The historic arrival of the world's inaugural liquefied hydrogen carrier, Suiso Frontier, arrived at Sultan Qaboos Port in Muscat on August 14. Credit: KHIA momentous event unfolded as the world's first-ever liquefied hydrogen carrier, Suiso Frontier, graced the shores of Sultan Qaboos Port in Muscat on August 14. Proudly crafted by the renowned Kawasaki Heavy Industries (KHI), this marks the long-anticipated debut of Suiso Frontier in the Sultanate of Oman. The name "Suiso" gracefully translates to hydrogen in Japanese, encapsulating the vessel's groundbreaking mission.

Read More

SkyWater Unveils Cryo Lab, Partners with FormFactor for Advanced RTS Noise Detection in ROIC Applications

SkyWater establishes cryogenic lab to characterize RTS noise for ROICs. Credit: SkyWaterSkyWater Technology announced earlier this year the establishment of a new cryogenic lab dedicated to characterizing random telegraph signal (RTS) noise for read-out integrated circuits (ROICs). This move is aimed at addressing the crucial need to mitigate RTS noise in order to enhance image quality and performance for ROIC customers across various applications, including night vision, military surveillance and industrial and automotive thermal imaging.

Read More

Breakthrough Enables Quench Detection in High-Field Magnets for Fusion Reactors

Magnetic field (Hall) probe matrix allows current distributions to be recreated and demountable joints allow current redistribution between CORC cables at each turn. Demountable joints shown here are conceptual. Joint resistances must be on the order of nano-ohms. Credit: Berkeley Lab Researchers at Berkeley Lab's Accelerator Technology & Applied Physics (ATAP) Division have developed a method for detecting and predicting the local loss of superconductivity in large-scale magnets that are capable of generating high magnetic fields. These high-field magnets are a core enabling technology for many areas of scientific research, medicine and energy, where they are used in a range of applications, including in particle accelerators and colliders for high energy [JS1] and nuclear physics, diagnostic and therapeutic medical devices and energy generation, transmission and storage technologies.

Read More

NASA Rocket Hardware Prepped for Shipment to Space Coast

NASA Rocket Hardware Prepped for Shipment to Space CoastWith Artemis teammates and media watching, United Launch Alliance (ULA) crews guided the interim cryogenic propulsion stage (ICPS) for NASA’s SLS (Space Launch System) rocket for Artemis III to the loading dock at ULA’s facility in Decatur, Alabama, July 31. ULA’s R/S RocketShip will transport the flight hardware to ULA’s sister facility in Florida near NASA’s Kennedy Space Center, where it will undergo final checkouts.

Read More

Contract Awarded for Acquisition of Large Cryogenic System for DUNE Detectors in South Dakota

Participants from the project’s kick-off meeting, with representatives from Air Products and the LBNF team, gather in Fermilab’s Wilson Hall with Fermilab Director Lia Merminga (center, front). Photo: Ryan Postel, FermilabA significant milestone has been achieved in the realization of the Deep Underground Neutrino Experiment (DUNE) with the awarding of a multi-year contract for the acquisition of a large cryogenic plant. This plant will be responsible for cooling tens of thousands of tons of liquid argon, bringing the ambitious experiment one step closer to fruition.

Read More

Cryogenics at FAIR: Adaptability is Key

Image: Cryo connections Cryogenic by-pass lines supplied to FAIR through an in-kind contribution by WUST in Poland. Credit: GSIThe Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, represents an ambitious reimagining of the GSI Helmholtz Center for Heavy Ion Research, one of Europe’s leading accelerator research laboratories. When it comes online for initial user experiments in 2027, FAIR will provide scientists from around the world with a multipurpose accelerator complex that’s built to address a broad-scope research canvas – everything from hadron physics, nuclear structure and astrophysics to atomic physics, materials science and radiation biophysics (as well as downstream applications in cancer therapy and space science).

Read More

Green Hydrogen Facility May Be Coming to NY

 Aerial view of proposed Green Hydrogen Facility in Massena. Credit: C&S EngineeringA new green facility may be coming to Massena, NY. Air Products, an industrial gas supply company, has proposed a green hydrogen facility in Massena, according to a press release from C&S Engineers. This facility would produce liquid hydrogen by electrolysis to be used as a renewable fuel source. Project leaders explained this process in a public fact sheet. Electrolysis is a technique that uses direct current to harvest the hydrogen.

Read More

Superconductivity Breakthrough: First Direct Visualization of a Zero-Field Pair Density Wave

Image: In this illustration of the superconducting material Eu-1144, the blue and magenta wave shown above the crystal lattice represents how the energy level of the electron pairs (yellow spheres) spatially modulates as these electrons move through the crystal. Credit: Brookhaven National LaboratoryIn the field of superconductivity—the phenomenon in which electrons can flow through a material with essentially zero resistance—the “holy grail” of discovery is a superconductor that can perform under everyday temperatures and pressures. Such a material could revolutionize modern life. But currently, even the “high-temperature” (high-Tc) superconductors that have been discovered must be kept very cold to function—too cold for most applications.

Read More

New Superconductor Could Lead to Quantum Computing Breakthrough

Image: A new type of superconductor may just be what physicists have been searching for over the past 40 years. Credit: TheDigitalArtist on PixabaySuperconductivity is the property of zero electrical resistance at ultralow temperatures and was discovered in 1911 by the Dutch physicist Kamerling-Ohnes. It plays a crucial role in many industries and technologies, ranging from quantum computing to energy. “Superconductors are amazing materials which have many strange and unusual properties,” explained Joe Carroll, a Ph.D. researcher at Macroscopic Quantum Matter Group laboratory in University College Cork. “Most famously they allow electricity to flow with zero resistance. That is, if you pass a current through them, they don’t start to heat up; in fact, they don’t dissipate any energy despite carrying a huge current.

Read More